231 lines
5.5 KiB
Plaintext
231 lines
5.5 KiB
Plaintext
|
class "Quaternion"
|
||
|
|
||
|
function Quaternion:__init(s, v)
|
||
|
if type(s) == "userdata" and
|
||
|
s.x and s.y and s.z then
|
||
|
-- XRay's order of rotations is ZXY
|
||
|
local unit_z = vector():set(0,0,1)
|
||
|
local q_z = get_rotation_around(unit_z, s.z)
|
||
|
|
||
|
-- X
|
||
|
local unit_x = vector():set(1,0,0)
|
||
|
local q_x = get_rotation_around(unit_x, s.x)
|
||
|
|
||
|
-- Y
|
||
|
local unit_y = vector():set(0,1,0)
|
||
|
local q_y = get_rotation_around(unit_y, s.y)
|
||
|
|
||
|
local q_rot = q_z:multiply(q_x):multiply(q_y)
|
||
|
|
||
|
self.w = q_rot.w
|
||
|
self.x = q_rot.x
|
||
|
self.y = q_rot.y
|
||
|
self.z = q_rot.z
|
||
|
else
|
||
|
self.w = s or 1
|
||
|
self.x = v and v.x or 0
|
||
|
self.y = v and v.y or 0
|
||
|
self.z = v and v.z or 0
|
||
|
end
|
||
|
|
||
|
end
|
||
|
|
||
|
function Quaternion:normalize()
|
||
|
local w2 = self.w*self.w
|
||
|
local x2 = self.x*self.x
|
||
|
local y2 = self.y*self.y
|
||
|
local z2 = self.z*self.z
|
||
|
local length = math.sqrt(w2+x2+y2+z2)
|
||
|
|
||
|
self.w = self.w/length
|
||
|
self.x = self.x/length
|
||
|
self.y = self.y/length
|
||
|
self.z = self.z/length
|
||
|
end
|
||
|
|
||
|
-- Using Laurent Couvidou's optimal code:
|
||
|
-- https://gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion
|
||
|
function Quaternion:rotate_vector(v)
|
||
|
-- Z and Y are flipped because XRay flips them around, so this is set to the
|
||
|
-- standard XYZ notation for calculation before being flipped back to XZY
|
||
|
local v = vector():set(v.x, v.z, v.y)
|
||
|
local u = vector():set(self.x, self.z, self.y)
|
||
|
local s = self.w
|
||
|
|
||
|
local v0 = vector():set(u):mul(vector():set(u):dotproduct(v)):mul(2.0)
|
||
|
local v1 = vector():set(v):mul((s*s) - vector():set(u):dotproduct(u))
|
||
|
local v2 = vector():set(0, 0, 0):crossproduct(u, v):mul(2*s)
|
||
|
|
||
|
local new_v = vector():set(v0):add(v1):add(v2)
|
||
|
|
||
|
return vector():set(new_v.x, new_v.z, new_v.y)
|
||
|
end
|
||
|
|
||
|
function Quaternion:multiply(q)
|
||
|
local q_v = vector():set(q.x, q.y, q.z)
|
||
|
local self_v = vector():set(self.x, self.y, self.z)
|
||
|
|
||
|
local w = (self.w*q.w) - (vector():set(self_v):dotproduct(vector():set(q_v)))
|
||
|
|
||
|
local v0 = vector():set(0, 0, 0):crossproduct(self_v, q_v)
|
||
|
local v1 = vector():set(q_v):mul(self.w)
|
||
|
local v2 = vector():set(self_v):mul(q.w)
|
||
|
|
||
|
local v = vector():set(v0):add(v1):add(v2)
|
||
|
|
||
|
return this.Quaternion(w, v)
|
||
|
end
|
||
|
|
||
|
-- Shamelessly taken from three.js
|
||
|
function Quaternion:to_euler_angles()
|
||
|
local angles = vector():set(0, 0, 0)
|
||
|
local x = self.x
|
||
|
local y = self.y
|
||
|
local z = self.z
|
||
|
local w = self.w
|
||
|
local x2 = x + x
|
||
|
local y2 = y + y
|
||
|
local z2 = z + z
|
||
|
local xx = x * x2
|
||
|
local xy = x * y2
|
||
|
local xz = x * z2
|
||
|
local yy = y * y2
|
||
|
local yz = y * z2
|
||
|
local zz = z * z2
|
||
|
local wx = w * x2
|
||
|
local wy = w * y2
|
||
|
local wz = w * z2
|
||
|
|
||
|
local te = {}
|
||
|
te[0] = ( 1 - ( yy + zz ) )
|
||
|
te[1] = ( xy + wz )
|
||
|
te[2] = ( xz - wy )
|
||
|
|
||
|
te[4] = ( xy - wz )
|
||
|
te[5] = ( 1 - ( xx + zz ) )
|
||
|
te[6] = ( yz + wx )
|
||
|
|
||
|
te[8] = ( xz + wy )
|
||
|
te[9] = ( yz - wx )
|
||
|
te[10] = ( 1 - ( xx + yy ) )
|
||
|
|
||
|
local m11 = te[0]
|
||
|
local m12 = te[4]
|
||
|
local m13 = te[8];
|
||
|
local m21 = te[1]
|
||
|
local m22 = te[5]
|
||
|
local m23 = te[9];
|
||
|
local m31 = te[2]
|
||
|
local m32 = te[6]
|
||
|
local m33 = te[10];
|
||
|
|
||
|
-- ZXY
|
||
|
angles.x = math.asin( clamp( m32, - 1, 1 ) );
|
||
|
|
||
|
if ( math.abs( m32 ) < 0.9999999 ) then
|
||
|
|
||
|
angles.y = math.atan2( - m31, m33 );
|
||
|
angles.z = math.atan2( - m12, m22 );
|
||
|
|
||
|
else
|
||
|
|
||
|
angles.y = 0
|
||
|
angles.z = math.atan2( m21, m11 );
|
||
|
|
||
|
end
|
||
|
|
||
|
-- XZY
|
||
|
-- angles.z = math.asin( - clamp( m12, - 1, 1 ) );
|
||
|
|
||
|
-- if ( math.abs( m12 ) < 0.9999999 ) then
|
||
|
|
||
|
-- angles.x = math.atan2( m32, m22 );
|
||
|
-- angles.y = math.atan2( m13, m11 );
|
||
|
|
||
|
-- else
|
||
|
|
||
|
-- angles.x = math.atan2( -m23, m33 );
|
||
|
-- angles.y = 0
|
||
|
|
||
|
-- end
|
||
|
|
||
|
return angles
|
||
|
end
|
||
|
|
||
|
function Quaternion:to_string()
|
||
|
return("[w:" .. self.w .. ", x:" .. self.x .. ", y:" .. self.y .. ", z:" .. self.z .. "]")
|
||
|
end
|
||
|
|
||
|
----------
|
||
|
|
||
|
|
||
|
function length_2(u)
|
||
|
local length = u:magnitude()
|
||
|
return length*length
|
||
|
end
|
||
|
|
||
|
function orthogonal(v)
|
||
|
local x = math.abs(v.x)
|
||
|
local y = math.abs(v.y)
|
||
|
local z = math.abs(v.z)
|
||
|
|
||
|
local other = nil
|
||
|
if x < y then
|
||
|
if x < z then
|
||
|
other = vector():set(1, 0, 0)
|
||
|
else
|
||
|
other = vector():set(0, 0, 1)
|
||
|
end
|
||
|
else
|
||
|
if y < z then
|
||
|
other = vector():set(0, 1, 0)
|
||
|
else
|
||
|
other = vector():set(0, 0, 1)
|
||
|
end
|
||
|
end
|
||
|
return vector():set(0, 0, 0):crossproduct(v, other);
|
||
|
end
|
||
|
|
||
|
function get_rotation_between(u, v)
|
||
|
local u = vector():set(u.x, u.z, u.y)
|
||
|
local v = vector():set(v.x, v.z, v.y)
|
||
|
|
||
|
local k_cos_theta = vector():set(u):dotproduct(v);
|
||
|
local k = math.sqrt(length_2(u) * length_2(v));
|
||
|
|
||
|
if (k_cos_theta / k == -1) then
|
||
|
-- if (k_cos_theta > 0.999999 or k_cos_theta < -0.999999) then
|
||
|
-- printf("ortho? " .. k_cos_theta)
|
||
|
-- 180 degree rotation around any orthogonal vector
|
||
|
local u_ortho = orthogonal(u):normalize()
|
||
|
return this.Quaternion(0, u_ortho);
|
||
|
end
|
||
|
|
||
|
local q = this.Quaternion(k_cos_theta + k, vector():set(0, 0, 0):crossproduct(u, v))
|
||
|
q:normalize()
|
||
|
|
||
|
local old_y = q.y
|
||
|
local old_z = q.z
|
||
|
q.y = old_z
|
||
|
q.z = old_y
|
||
|
|
||
|
return q
|
||
|
end
|
||
|
|
||
|
function get_rotation_around(v, angle)
|
||
|
local q = this.Quaternion()
|
||
|
q.w = math.cos(angle/2)
|
||
|
q.x = v.x * math.sin(angle/2)
|
||
|
q.y = v.y * math.sin(angle/2)
|
||
|
q.z = v.z * math.sin(angle/2)
|
||
|
|
||
|
q:normalize()
|
||
|
|
||
|
return q
|
||
|
end
|
||
|
|
||
|
function rotate_vector_by_euler(v_loc, v_rot)
|
||
|
local q_rot = Quaternion(v_rot)
|
||
|
|
||
|
return q_rot:rotate_vector(v_loc)
|
||
|
end
|