Divergent/mods/Ledge Climbing Mantling/gamedata/scripts/demonized_geometry_ray.script

387 lines
13 KiB
Plaintext
Raw Normal View History

2024-03-17 20:18:03 -04:00
local enable_debug = false
local print_tip = function(s, ...)
local f = print_tip or printf
if enable_debug then
return f("Geometry Ray: " .. s, ...)
end
end
local function throttle(func, tg_throttle)
local tg = 0
if not tg_throttle or tg_throttle == 0 then
return function(...)
local t = time_global()
if t ~= tg then
tg = t
return func(...)
end
end
else
return function(...)
local t = time_global()
if t < tg then return end
tg = t + tg_throttle
return func(...)
end
end
end
-- Check for material (engine edit required)
function lshift(x, by)
return x * 2 ^ by
end
function test(x, mask)
return bit_and(x, mask) == mask
end
local flags_test = {
["flBreakable"] = lshift(1, 0),
["flBounceable"] = lshift(1, 2),
["flSkidmark"] = lshift(1, 3),
["flBloodmark"] = lshift(1, 4),
["flClimable"] = lshift(1, 5),
["flPassable"] = lshift(1, 7),
["flDynamic"] = lshift(1, 8),
["flLiquid"] = lshift(1, 9),
["flSuppressShadows"] = lshift(1, 10),
["flSuppressWallmarks"] = lshift(1, 11),
["flActorObstacle"] = lshift(1, 12),
["flNoRicoshet"] = lshift(1, 13),
["flInjurious"] = lshift(1, 28),
["flShootable"] = lshift(1, 29),
["flTransparent"] = lshift(1, 30),
["flSlowDown"] = lshift(1, 31),
}
--[[
// material exports
.def_readonly( "material_name" , &script_rq_result::pMaterialName )
.def_readonly( "material_flags" , &script_rq_result::pMaterialFlags )
.def_readonly( "material_phfriction" , &script_rq_result::fPHFriction )
.def_readonly( "material_phdamping" , &script_rq_result::fPHDamping )
.def_readonly( "material_phspring" , &script_rq_result::fPHSpring )
.def_readonly( "material_phbounce_start_velocity" , &script_rq_result::fPHBounceStartVelocity )
.def_readonly( "material_phbouncing" , &script_rq_result::fPHBouncing )
.def_readonly( "material_flotation_factor" , &script_rq_result::fFlotationFactor )
.def_readonly( "material_shoot_factor" , &script_rq_result::fShootFactor )
.def_readonly( "material_shoot_factor_mp" , &script_rq_result::fShootFactorMP )
.def_readonly( "material_bounce_damage_factor" , &script_rq_result::fBounceDamageFactor )
.def_readonly( "material_injurious_speed" , &script_rq_result::fInjuriousSpeed )
.def_readonly( "material_vis_transparency_factor" , &script_rq_result::fVisTransparencyFactor )
.def_readonly( "material_snd_occlusion_factor" , &script_rq_result::fSndOcclusionFactor )
.def_readonly( "material_density_factor" , &script_rq_result::fDensityFactor )
]]
-- Geometry Ray class by Thial, edited by demonized
class "geometry_ray"
--[[
(At least one range parameter should be specified)
ray_range:
Defines the total range of the ray. If you want to attach the ray to
a fast moving object it is good to extend the ray so that you can reduce
the polling rate by using the get function.
contact_range:
Defines the distance at which the result will report being in contact.
You can skip it or set it to a value lower than the ray_range to
still be able to get the intersection position from the result while
marking the ray as not being in contact yet
distance_offset:
Defines how much the intersection position is offset.
You can use both positive and negative values or you can leave it blank.
flags (bit map = values can be added together for combined effect):
0 : None
1 : Objects
2 : Statics
4 : Shapes
8 : Obstacles
]]--
function geometry_ray:__init(args)
local args = args or {}
if args.ray_range == nil and args.contact_range == nil then
return nil
end
self.ray_range = args.ray_range or args.contact_range
self.contact_range = args.contact_range or args.ray_range
self.distance_offset = args.distance_offset ~= nil and args.distance_offset or 0
self.ray = ray_pick()
self.ray:set_flags(args.flags or 2)
self.ray:set_range(self.ray_range)
self.visualize = args.visualize
self.visualize_end_pos_only = args.visualize_end_pos_only
if args.ignore_object then
self.ray:set_ignore_object(args.ignore_object)
end
end
--[[
position:
position from which the ray will start
direction:
direction in which the ray will be fired
]]--
function geometry_ray:get(position, direction)
if position == nil or direction == nil then
return nil
end
local position = vector():set(position)
local direction = vector():set(direction)
self.ray:set_position(position)
self.ray:set_direction(direction)
local res = self.ray:query()
local distance = res and self.ray:get_distance() or self.ray_range
local result = {}
if self.visualize then
local init_pos = vector():set(position)
local end_pos = vector():mad(init_pos, direction, distance)
VisualizeRay(init_pos, end_pos, nil, nil, nil, self.visualize_end_pos_only)
end
result.in_contact = distance <= self.contact_range
result.position = position:add(direction:mul(distance + self.distance_offset))
result.distance = distance
result.raw_distance = self.ray:get_distance()
result.success = res
result.object = self.ray:get_object()
result.element = self.ray:get_element()
result.result = self.ray:get_result()
-- Cast to Lua table
-- if result.result then
-- local r = {}
-- r.material_name = result.result.material_name
-- r.material_flags = result.result.material_flags
-- r.material_phfriction = result.result.material_phfriction
-- r.material_phdamping = result.result.material_phdamping
-- r.material_phspring = result.result.material_phspring
-- r.material_phbounce_start_velocity = result.result.material_phbounce_start_velocity
-- r.material_phbouncing = result.result.material_phbouncing
-- r.material_flotation_factor = result.result.material_flotation_factor
-- r.material_shoot_factor = result.result.material_shoot_factor
-- r.material_shoot_factor_mp = result.result.material_shoot_factor_mp
-- r.material_bounce_damage_factor = result.result.material_bounce_damage_factor
-- r.material_injurious_speed = result.result.material_injurious_speed
-- r.material_vis_transparency_factor = result.result.material_vis_transparency_factor
-- r.material_snd_occlusion_factor = result.result.material_snd_occlusion_factor
-- r.material_density_factor = result.result.material_density_factor
-- result.result = r
-- end
return result
end
-- Engine edit required for testing materials
-- If not possible to get material - return nil
function geometry_ray:isMaterialFlag(flag)
local result = self.ray:get_result()
if not result then
return
end
if not result.material_flags then
return
end
if not flags_test[flag] then
return
end
return test(result.material_flags, flags_test[flag])
end
function geometry_ray:getMaterialFlags()
local result = self.ray:get_result()
if not result then
return
end
if not result.material_flags then
return
end
local res = {}
for k, v in pairs(flags_test) do
res[k] = test(result.material_flags, v)
end
return res
end
-- Utils
-- Check if values are similar to a precision
function similar(float1, float2, epsilon)
return math.abs(float1 - float2) <= (epsilon or 0.0001)
end
function vec_similar(vec1, vec2, epsilon)
return similar(vec1.x, vec2.x, epsilon) and similar(vec1.y, vec2.y, epsilon) and similar(vec1.z, vec2.z, epsilon)
end
-- Linear inter/extrapolation
function lerp(a, b, f)
if a and b and f then
return a + f * (b - a)
else
return a or b or 0
end
end
-- Visualize ray from one point to other with particles playing at setted step
class "VisualizeRay"
local lineId = 70000
function VisualizeRay:__init(init_pos, end_pos, particle_step, visualize_time, force_stop, draw_end_only, color)
self.init_pos = init_pos
self.end_pos = end_pos
self.visualize_time = visualize_time or 3000
self.particle_step = particle_step or 0.02
self.force_stop = force_stop
self.force_stop_default = force_stop
self.time = 0
self.draw_end_only = draw_end_only
self.color = color or fcolor():set(0,1,0,1)
self.start = function()
lineId = lineId + 1
local id = lineId
local line = debug_render.add_object(id, DBG_ScriptObject.line):cast_dbg_line()
line.point_a = init_pos
line.point_b = end_pos
line.visible = true
line.color = self.color
CreateTimeEvent("geometry_ray_stop", id, self.visualize_time / 1000, function()
debug_render.remove_object(id)
lineId = lineId - 1
return true
end)
end
self.start()
self.reset_time = function()
self.time = 0
end
self.reset = function()
self.time = 0
self.force_stop = self.force_stop_default
self.start()
end
self.stop = function()
self.time = self.visualize_time + 1
self.force_stop = true
end
end
local EPS = 0.0000100
local function fsimilar(value, to, eps)
return math.abs(value - to) < eps
end
local function generate_orthonormal_basis_normalized(d)
local dir = vector():set(d):normalize()
local up = vector():set(0,0,0)
local right = vector():set(0,0,0)
local fInvLength
if (fsimilar(dir.y, 1.0, EPS)) then
up:set(0, 0, 1)
fInvLength = 1 / math.sqrt(dir.x * dir.x + dir.y * dir.y)
right.x = -dir.y * fInvLength
right.y = dir.x * fInvLength
right.z = 0
up.x = -dir.z * right.y
up.y = dir.z * right.x
up.z = dir.x * right.y - dir.y * right.x
else
up:set(0, 1, 0)
fInvLength = 1 / math.sqrt(dir.x * dir.x + dir.z * dir.z)
right.x = dir.z * fInvLength
right.y = 0
right.z = -dir.x * fInvLength
up.x = dir.y * right.z
up.y = dir.z * right.x - dir.x * right.z
up.z = -dir.y * right.x
end
return dir, up, right
end
-- Get surface normals by Aoldri, edited by demonized
function get_surface_normal(pos, dir, ray_props, visualize_props, initial_ray)
local function get_geometry_ray()
return geometry_ray({
ray_range = ray_props and ray_props.ray_range or 1000,
visualize = ray_props and ray_props.visualize,
flags = ray_props and ray_props.flags or (1+2),
ignore_object = db.actor,
})
end
-- Get player's camera position and direction in world space
local pos0 = pos and vector():set(pos) or device().cam_pos
local angle1 = dir and vector():set(dir) or device().cam_dir
-- Generate two positions orthogonal to camera direction and each other
local angle1, pos01, pos02 = generate_orthonormal_basis_normalized(angle1)
pos01 = pos01:mul(0.01)
pos02 = pos02:mul(0.01)
pos01 = pos01:add(pos0)
pos02 = pos02:add(pos0)
-- Get positions of intersections of rays around pos0
local pos1
local res
if initial_ray then
pos1 = initial_ray.position
res = initial_ray
else
local ray = get_geometry_ray()
res = ray:get(pos0, angle1)
pos1 = res.position
end
local ray = get_geometry_ray()
local pos2 = ray:get(pos01, angle1).position
local ray = get_geometry_ray()
local pos3 = ray:get(pos02, angle1).position
if not res.success then
-- print_tip("cant get normal by pos %s, dir %s", pos0, angle1)
return
end
-- VisualizeRay(pos0, pos1, nil, 300)
-- VisualizeRay(pos01, pos2, nil, 300)
-- VisualizeRay(pos02, pos3, nil, 300)
-- Get vectors from intersection points from pos1
local vec2 = vec_sub(pos1, pos2)
local vec3 = vec_sub(pos1, pos3)
-- Find normal vector of surface by taking cross product of intersection vectors
local cross = (vector_cross(vec2, vec3)):normalize()
-- If the direction and normal vectors heading in similar direction - invert normal
local deg = angle1:dotproduct(cross)
if deg > 0 then
cross:invert()
end
cross.x = clamp(cross.x, -1, 1)
cross.y = clamp(cross.y, -1, 1)
cross.z = clamp(cross.z, -1, 1)
if visualize_props then
local time = visualize_props.visualize_time or 300
local color = visualize_props.color or fcolor():set(0,1,0,1)
VisualizeRay(pos1, vector():set(pos1):add(cross), nil, time, nil, nil, color)
end
return cross
end