//night_vision.h - to define functions and variables for all 3 generations #include "common.h" /////////////////////////////////////////////////////// // BEEF'S SHADER BASED NIGHT VISION EFFECT // /////////////////////////////////////////////////////// // Huge credit TO LVutner from Anomaly Discord, who // // literally taught me everything I know, to Sky4Ace // // who's simple_blur function I've adapted for this // // shader, and to Meltac, who provided some advice // // and inspiration for developing this shader. // /////////////////////////////////////////////////////// // Note: You are free to distribute and adapt this // // Shader and any components, just please provide // // credit to myself and/or the above individuals. I // // have provided credit for individual functions and // // their original authors where applicable. - BEEF // /////////////////////////////////////////////////////// /////////////////////////////////////////////////////// // STEP 0 - GLOBAL DEFINITIONS AND INCLUDES /////////////////////////////////////////////////////// //////// GLOBAL SETTINGS(ALL GENERATIONS)//////// // NVG POSITIONING OPTIONS: in (X, Y) format. If X is 0, it's L edge of screen, if 1, it's right edge of screen. Note that it's not linear across the screen. #define nvg_gen_1_centered float2(0.5f,0.5f) // Gen 1 monocular without offset #define nvg_gen_2_offset_1 float2(0.25f,0.5f) // Offset for Gen 2 left eye #define nvg_gen_2_offset_2 float2(0.75f,0.5f) // Offset for Gen 2 right eye #define nvg_gen_3_offset_1 float2(0.05f,0.5f) // Offset for Gen 3 outer left tube #define nvg_gen_3_offset_2 float2(0.3f,0.5f) // Offset for Gen 3 inner left tube #define nvg_gen_3_offset_3 float2(0.7f,0.5f) // Offset for Gen 3 inner right tube #define nvg_gen_3_offset_4 float2(0.95f,0.5f) // Offset for Gen 3 outer right tube #define nvg_gen_1_offset float2(0.75f,0.5f) // Offset for Gen 1 monocular #define nvg_gen_1_offset_flipped float2 (1-nvg_gen_1_offset.x, 1-nvg_gen_1_offset.y) // inverse of nvg_gen_1_offset (To allow switching L/R side of screen) #define circle_radius float (0.5f) // NVG BLUR OPTIONS: (DEPTH INFLUENCED, CLOSE OBJECTS ARE AT MAX BLUR, FAR OBJECTS ARE AT MIN BLUR) #define gen_1_min_blur_factor float (0.25) // Gen 1 - minimum blur applied to image (at far distance), 1 is no blur, higher is more #define gen_1_max_blur_factor float (0.95) // maximum blur applied to image (at camera) #define gen_2_min_blur_factor float (0.2) // Gen 1 - minimum blur applied to image (at far distance), 1 is no blur, higher is more #define gen_2_max_blur_factor float (0.8) // maximum blur applied to image (at camera) #define gen_3_min_blur_factor float (0.1) // Gen 1 - minimum blur applied to image (at far distance), 1 is no blur, higher is more #define gen_3_max_blur_factor float (0.6) // maximum blur applied to image (at camera) // NVG VISION DISTANCE (LIGHT ATTENTUATION - FEWER PHOTONS FROM FAR OBJECTS HIT THE INTENSIFIER TUBE AND THEREFORE APPEAR DARKER) #define gen_1_max_vision_distance float (250) // How far away do objects appear completely dark for Gen 1 NVG #define gen_1_min_vision_distance float(30.0) // How close does light attenutation begin to take effect (default 0.0) #define gen_1_dim_threshold float (0.7) // Pixels brighter than this aren't dimmed, since they're likely light sources #define gen_2_max_vision_distance float (400) // How far away do objects appear completely dark for Gen 1 NVG #define gen_2_min_vision_distance float(30.0) // How close does light attenutation begin to take effect (default 0.0) #define gen_2_dim_threshold float (0.7) // Pixels brighter than this aren't dimmed, since they're likely light sources #define gen_3_max_vision_distance float (600) // How far away do objects appear completely dark for Gen 1 NVG #define gen_3_min_vision_distance float(30.0) // How close does light attenutation begin to take effect (default 0.0) #define gen_3_dim_threshold float (0.7) // Pixels brighter than this aren't dimmed, since they're likely light sources // LIGHT AMPLIFICATION VALUES // #define nvg_light_amplificiation float (8) // How much brigher does the image get before NVG processing // LUMA SHARPEN VALUES // NVG BLOOM OPTIONS (AKA WASHOUT EFFECT): #define gen_1_bloom_threshold (0.11) // Threshold from 0 to 1 of how bright the pixel should be for bloom (0 is black, 0.5 is middle gray, 1.0 is bright white - default about 0.9 looks good) #define gen_1_bloom_multiplier float (2.5) // How much transparency to apply to bloom effect (0.0 = full bloom, 0.5 = 50%, 1.0 = no bloom) #define gen_2_bloom_threshold (0.18) // Threshold from 0 to 1 of how bright the pixel should be for bloom (0 is black, 0.5 is middle gray, 1.0 is bright white - default about 0.9 looks good) #define gen_2_bloom_multiplier float (2) // How much transparency to apply to bloom effect (0.0 = full bloom, 0.5 = 50%, 1.0 = no bloom) #define gen_3_bloom_threshold (0.29) // Threshold from 0 to 1 of how bright the pixel should be for bloom (0 is black, 0.5 is middle gray, 1.0 is bright white - default about 0.9 looks good) #define gen_3_bloom_multiplier float (2) // How much transparency to apply to bloom effect (0.0 = full bloom, 0.5 = 50%, 1.0 = no bloom) // NVG CRT / NOISE VALUES #define gen_1_crt_effect_factor float(0.05) // How much CRT effect to add to NVG image (0 = none, 1 = max) (CRT effect makes it look like an old school Cathode Ray Tube television) #define gen_1_nvg_noise_factor float (0.15) // How much noise to add to NVG image (0.04 is default, anything greater than 0.15 is insane) #define gen_1_scintillation_constant float (0.999f) // The closer the number is to 1.00000, the less scintillation effect. 0.9995f is a good default value. 0.9990 is stronger. #define gen_2_crt_effect_factor float(0.2) // How much CRT effect to add to NVG image (0 = none, 1 = max) (CRT effect makes it look like an old school Cathode Ray Tube television) #define gen_2_nvg_noise_factor float (0.15) // How much noise to add to NVG image (0.04 is default, anything greater than 0.15 is insane) #define gen_2_scintillation_constant float (0.9993f) // The closer the number is to 1.00000, the less scintillation effect. 0.9995f is a good default value. 0.9990 is stronger. #define gen_3_crt_effect_factor float(0.4) // How much CRT effect to add to NVG image (0 = none, 1 = max) (CRT effect makes it look like an old school Cathode Ray Tube television) #define gen_3_nvg_noise_factor float (0.15) // How much noise to add to NVG image (0.04 is default, anything greater than 0.15 is insane) #define gen_3_scintillation_constant float (0.9995f) // The closer the number is to 1.00000, the less scintillation effect. 0.9995f is a good default value. 0.9990 is stronger. // NVG COLOR OPTIONS: #define gen_1_saturation_color float3 (0.4,1,0.1) // Gen1 NVG color - it defines the max amount of color from 0 to 1 using (Red,Green,Blue) #define gen_2_saturation_color float3 (0.3,1,0.3) // Gen1 NVG color - it defines the max amount of color from 0 to 1 using (Red,Green,Blue) #define gen_3_saturation_color float3 (0.1,1,0.8) // Gen1 NVG color - it defines the max amount of color from 0 to 1 using (Red,Green,Blue) // LUMA Sharpen // NVG VIGNETTE AMOUNT #define gen_1_vignette_amount float (0.1f) #define gen_2_vignette_amount float (0.08f) #define gen_3_vignette_amount float (0.05f) /////////////////////////////////////////////////////// // DEFINE NVG MASK (Credit to LVutner for huge assistance in designing the functions) /////////////////////////////////////////////////////// float compute_lens_mask(float2 masktc, float nvg_gen) { if (nvg_gen == 1) // for Gen 1 NVG { return step(distance(masktc,nvg_gen_1_offset), circle_radius); } else if (nvg_gen == 10) // for Gen 1 NVG, but flipped (Left side vs right side) aka Gen 10 NVG { return step(distance(masktc,nvg_gen_1_offset_flipped), circle_radius); } else if (nvg_gen == 11) // for Gen 1 NVG, but centered { return step(distance(masktc,nvg_gen_1_centered), circle_radius); } else if (nvg_gen == 2) // for Gen 2 NVGs { if ( (step(distance(masktc,nvg_gen_2_offset_1), circle_radius) == 1) || (step(distance(masktc,nvg_gen_2_offset_2), circle_radius) == 1)) { return 1; } else { return 0; } } else if (nvg_gen == 3) // for Gen 3 NVGs { if (((step(distance(masktc,nvg_gen_3_offset_1), circle_radius) == 1) || (step(distance(masktc,nvg_gen_3_offset_2), circle_radius) == 1)) || ((step(distance(masktc,nvg_gen_3_offset_3), circle_radius) == 1) || (step(distance(masktc,nvg_gen_3_offset_4), circle_radius) == 1))) { return 1; } else { return 0; } } else { return 0; } } /////////////////////////////////////////////////////// // ASPECT RATIO CORRECTION (Credit LVutner) /////////////////////////////////////////////////////// float2 aspect_ratio_correction (float2 tc) { tc.x -= 0.5f; tc.x *= (screen_res.x / screen_res.y); tc.x += 0.5f; return tc; } /////////////////////////////////////////////////////// // CURVED TEXTURE COORDINATES FOR CRT EFFECT (adapted from "MattiasCRT" on ShaderToy, credit Mattias) /////////////////////////////////////////////////////// float2 curve_texturecoords(float2 curved_tc) { curved_tc = (curved_tc - 0.5) * 2.0; curved_tc *= 1.1; curved_tc.x *= 1.0 + pow((abs(curved_tc.y) / 5.0), 2.0); curved_tc.y *= 1.0 + pow((abs(curved_tc.x) / 4.0), 2.0); curved_tc = (curved_tc / 2.0) + 0.5; curved_tc = curved_tc *0.92 + 0.04; return curved_tc; } /////////////////////////////////////////////////////// // Exposure Increaser /////////////////////////////////////////////////////// float3 exposer_increaser( float3 image, float gray, float exposure) { float b=4*(exposure-1); float a=1-b; float f= gray*(a*gray+b); return f*image; } /////////////////////////////////////////////////////// // CRT EFFECT (adapted from MattiasCRT on ShaderToy, credit Mattias) /////////////////////////////////////////////////////// float3 make_crt_ified(float3 fragColor, float2 tc ) { //float2 screen_res = screen_res.xy; // define screen res variable float2 uv = curve_texturecoords(tc); float3 col; float x = sin(0.3*timers.x+uv.y*21.0)*sin(0.7*timers.x+uv.y*29.0)*sin(0.3+0.33*timers.x+uv.y*31.0)*0.0017; col.r = fragColor.r; col.g = fragColor.g; col.b = fragColor.b; col.r += 0.08f * fragColor.r; col.g += 0.05f * fragColor.g; col.b += 0.08f * fragColor.b; col = clamp(col*0.6+0.4*col*col*1.0,0.0,1.0); float vig = (0.0 + 1.0*16.0*uv.x*uv.y*(1.0-uv.x)*(1.0-uv.y)); col *= float(pow(abs(vig),0.3)); col *= float3(0.95,1.05,0.95); col *= 2.8; float scans = clamp( 0.35+0.35*sin(uv.y*screen_res.y*2.0), 0.0, 1.0); float s = pow(scans,1.7); col = col*float( 0.4+0.7*s) ; col *= 1.0+0.01*sin(110.0*timers.x); if (uv.x < 0.0 || uv.x > 1.0) col *= 0.0; if (uv.y < 0.0 || uv.y > 1.0) col *= 0.0; col*=1.0-0.65*float(clamp(((tc.x % 2.0)-1.0)*2.0,0.0f,1.0f)); float comp = smoothstep( 0.1, 0.9, sin(timers.x) ); fragColor = col; return fragColor; } /////////////////////////////////////////////////////// // LUMA SHARPEN (adapted from Simple Luma Sharpen on ShaderToy, credit xwize) /////////////////////////////////////////////////////// float3 YUVFromRGB( float3 color) { return float3 (color.r * 0.299 + color.g * 0.587 + color.b * 0.114, color.r * -0.147 + color.g * -0.289 + color.b * 0.436, color.r * 0.615 + color.g * -0.515 + color.b * -0.100); } float3 RGBFromYUV ( float3 color) { return float3 (color.r * 1.0 + color.b * 1.140, color.r * 1.0 + color.g * -0.395 + color.b * 0.581 , color.r * 1.0 + color.g * 2.032); } float extractLuma(float3 c) { return (c.r * 0.299 + c.g * 0.587 + c.b * 0.114); } float3 luma_sharpen(float3 image, float2 uv) { float3 yuv = YUVFromRGB(image); float2 imgSize = screen_res.xy; float accumY = 0.0; for(int i = -1; i <= 1; ++i) { for(int j = -1; j <= 1; ++j) { float2 offset = float2(i,j) / imgSize; float s = extractLuma(s_image.SampleLevel(smp_rtlinear,uv + offset,0).rgb); float notCentre = min(float(i*i + j*j),1.0); accumY += s * (9.0 - notCentre*10.0); } } accumY /= 9.0; float gain = 0.9; accumY = (accumY + yuv.x)*gain; image = RGBFromYUV (float3(accumY,yuv.y,yuv.z)); // sharpened return image; } /////////////////////////////////////////////////////// // VIGNETTE CALCULATOR (USED IN NVG AS WELL AS BLOOM PHASES TO DARKEN EDGES OF SHIT) /////////////////////////////////////////////////////// float calc_vignette (float night_vision_generation, float2 tc) { float vignette; float2 corrected_texturecoords = aspect_ratio_correction(tc); if (night_vision_generation == 1) { float gen1_vignette_right = pow(smoothstep(circle_radius,circle_radius-gen_1_vignette_amount, distance(corrected_texturecoords,nvg_gen_1_offset)),3); vignette = 1.0 - (1.0 - gen1_vignette_right); // apply vignette } else if (night_vision_generation == 10) { float gen1_vignette_left = pow(smoothstep(circle_radius,circle_radius-gen_1_vignette_amount, distance(corrected_texturecoords,nvg_gen_1_offset_flipped)),3); vignette = 1.0 - (1.0 - gen1_vignette_left); // apply vignette } else if (night_vision_generation == 11) { float gen1_vignette_center = pow(smoothstep(circle_radius,circle_radius-gen_1_vignette_amount, distance(corrected_texturecoords,nvg_gen_1_centered)),3); vignette = 1.0 - (1.0 - gen1_vignette_center); // apply vignette } else if (night_vision_generation == 2) { float gen2_vignette_1 = pow(smoothstep(circle_radius,circle_radius-gen_2_vignette_amount, distance(corrected_texturecoords,nvg_gen_2_offset_1)),3); float gen2_vignette_2 = pow(smoothstep(circle_radius,circle_radius-gen_2_vignette_amount, distance(corrected_texturecoords,nvg_gen_2_offset_2)),3); vignette = 1.0 - ((1.0 - gen2_vignette_1) * (1.0 - gen2_vignette_2)); // apply vignette } else if (night_vision_generation == 3) { float gen3_vignette_1 = pow(smoothstep(circle_radius,circle_radius-gen_3_vignette_amount, distance(corrected_texturecoords,nvg_gen_3_offset_1)),3); float gen3_vignette_2 = pow(smoothstep(circle_radius,circle_radius-gen_3_vignette_amount, distance(corrected_texturecoords,nvg_gen_3_offset_2)),3); float gen3_vignette_3 = pow(smoothstep(circle_radius,circle_radius-gen_3_vignette_amount, distance(corrected_texturecoords,nvg_gen_3_offset_3)),3); float gen3_vignette_4 = pow(smoothstep(circle_radius,circle_radius-gen_3_vignette_amount, distance(corrected_texturecoords,nvg_gen_3_offset_4)),3); vignette = 1.0 - ((1.0 - gen3_vignette_1) * (1.0 - gen3_vignette_2) * (1.0 - gen3_vignette_3) * (1.0 - gen3_vignette_4)); // apply vignette } return vignette; } /////////////////////////////////////////////////////// // DEPTH BLUR - LITERALLY BLURS THE DEPTH VALUE IN S_POSITION /////////////////////////////////////////////////////// float blurred_depth (float2 tc, float fp_start, float fp_end) { float Pi = 6.28318530718; // Pi*2 float Directions = 12.0; // BLUR DIRECTIONS (Default 16.0 - More is better but slower) float Quality = 4.0; // BLUR QUALITY (Default 4.0 - More is better but slower) float Size = 4; float2 Radius = Size/screen_res.xy; // how far away is the center of our COC float center_depth = s_position.Load( int3( (tc)*screen_res.xy, 0 ), 0 ).z; if (center_depth == 0) { center_depth = 10000; } // set our average depth to be center depth float depth_average = 0; // where we store the depth_sample float depth_sample; // where we store the weighted value from sample float depth_tap; // where we store our weighted float weight = 0.0; // where we store the total weighted float total_weight = 0.0; // Blur calculations for(float i=1.0; i<=Quality; i++) // how far away are we { for( float d=0.0; d<Pi; d+=Pi/Directions) // where are we around the circle { // pull depth at our sample point depth_sample = s_position.Load( int3( ((tc+float2(cos(d),sin(d))*Radius*i) * screen_res.xy), 0 ), 0 ).z; // if we hit the sky, give it a depth of 10k if (depth_sample == 0) {depth_sample = 10000.0f; } // if the point we hit is closer than our (center? average), then that point should add blurring to our centerpoint if (depth_sample < center_depth) { weight = Quality - pow((i - 1),0.5); depth_average += depth_sample * weight; total_weight += weight; } // but if the point we hit is farther than our (center? average?) then that point should not be adding blur to our centerpoint } } depth_average /= total_weight; return depth_average; }