Divergent/mods/Dynamic Zone Transitions/gamedata/scripts/kd_tree.script

572 lines
16 KiB
Plaintext

-- https://github.com/ubilabs/kd-tree-javascript
-- k-d Tree Implementation for Lua for quick search in multidimensional tables
-- k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.
-- Rewritten to pure Lua and adapted for usage in Anomaly by demonized
local math_floor = math.floor
local math_log = math.log
local math_max = math.max
local math_min = math.min
local table_insert = table.insert
local table_remove = table.remove
local table_sort = table.sort
local empty_table = empty_table
local pairs = pairs
local function table_slice(t, first, last)
local res = {}
for i = first or 1, last and last - 1 or #t do
res[#res + 1] = t[i]
end
return res
end
-- http://lua-users.org/wiki/BinaryInsert
local function binary_insert(t, value, fcomp)
-- Initialise compare function
local fcomp = fcomp or function(a, b) return a < b end
-- print_table(value)
-- Initialise numbers
local iStart, iEnd, iMid, iState = 1, #t, 1, 0
if iEnd == 0 then
t[1] = value
-- printf("adding in beginning table empty")
return 1
end
if fcomp(value, t[1]) then
-- printf("adding in beginning %s of %s", 1, iEnd)
table_insert(t, 1, value)
return 1
end
if not fcomp(value, t[iEnd]) then
-- printf("adding in end %s of %s", iEnd + 1, iEnd)
local pos = iEnd + 1
t[pos] = value
return pos
end
-- Get insert position
while iStart <= iEnd do
-- calculate middle
iMid = math_floor((iStart + iEnd) / 2)
-- compare
if fcomp(value, t[iMid]) then
iEnd, iState = iMid - 1, 0
else
iStart, iState = iMid + 1, 1
end
end
local pos = iMid + iState
-- printf("adding in middle %s of %s", pos, iEnd)
table_insert(t, pos, value)
return pos
end
function Node(obj, dimension, parent)
local node = {}
node.obj = obj
node.left = nil
node.right = nil
node.parent = parent
node.dimension = dimension
return node
end
function kdTree(points, metric, dimensions)
local kd_tree = {}
kd_tree.points = points or {}
kd_tree.metric = metric
kd_tree.dimensions = dimensions
local function buildTree(new_points, depth, parent)
local dim = (depth % #dimensions) + 1
local median
local node
if not new_points then
return
end
if #new_points == 0 then
-- printf("buildTree #new_points == 0")
return
end
if #new_points == 1 then
-- printf("buildTree #new_points == 1")
return Node(new_points[1], dim, parent)
end
table_sort(new_points, function(a, b)
return a[dimensions[dim]] < b[dimensions[dim]]
end)
median = math_floor(#new_points / 2) + 1
node = Node(new_points[median], dim, parent)
node.left = buildTree(table_slice(new_points, 1, median), depth + 1, node)
node.right = buildTree(table_slice(new_points, median + 1), depth + 1, node)
return node
end
kd_tree.root = buildTree(points, 0, nil)
kd_tree.insertAndRebuild = function(self, point)
self.points[#self.points + 1] = point
self.root = buildTree(self.points, 0, nil)
return self
end
kd_tree.insert = function(self, point)
local function innerSearch(node, parent)
if node == nil then
return parent
end
local dimension = self.dimensions[node.dimension]
if point[dimension] < node.obj[dimension] then
return innerSearch(node.left, node)
else
return innerSearch(node.right, node)
end
end
local insertPosition = innerSearch(self.root, nil)
local newNode
local dimension
if insertPosition == nil then
self.points[#self.points + 1] = point
self.root = buildTree(self.points, 0, nil)
return self
end
newNode = Node(point, (insertPosition.dimension + 1) % #self.dimensions, insertPosition)
dimension = self.dimensions[insertPosition.dimension]
if point[dimension] < insertPosition.obj[dimension] then
insertPosition.left = newNode
else
insertPosition.right = newNode
end
self.points[#self.points + 1] = point
return self
end
kd_tree.remove = function(self, point)
local node
local function nodeSearch(node)
if node == nil then
return
end
if node.obj == point then
return node
end
local dimension = self.dimensions[node.dimension]
if point[dimension] < node.obj[dimension] then
return nodeSearch(node.left, node)
else
return nodeSearch(node.right, node)
end
end
local function removeNode(node)
local nextNode
local nextObj
local pDimension
local function findMin(node, dim)
local dimension
local own
local left
local right
local min
if node == nil then
return
end
dimension = self.dimensions[dim]
if node.dimension == dim then
if node.left ~= nil then
return findMin(node.left, dim)
end
return node
end
own = node.obj[dimension]
left = findMin(node.left, dim)
right = findMin(node.right, dim)
min = node
if left ~= nil and left.obj[dimension] < own then
min = left
end
if right ~= nil and right.obj[dimension] < min.obj[dimension] then
min = right
end
return min
end
if node.left == nil and node.right == nil then
if node.parent == nil then
self.root = nil
return
end
pDimension = self.dimensions[node.parent.dimension]
if node.obj[pDimension] < node.parent.obj[pDimension] then
node.parent.left = nil
else
node.parent.right = nil
end
return
end
-- If the right subtree is not empty, swap with the minimum element on the
-- node's dimension. If it is empty, we swap the left and right subtrees and
-- do the same.
if node.right ~= nil then
nextNode = findMin(node.right, node.dimension)
nextObj = nextNode.obj
removeNode(nextNode)
node.obj = nextObj
else
nextNode = findMin(node.left, node.dimension)
nextObj = nextNode.obj
removeNode(nextNode)
node.right = node.left
node.left = nil
node.obj = nextObj
end
end
node = nodeSearch(self.root)
if node == nil then
return
end
removeNode(node)
return self
end
kd_tree.clearRoot = function(self)
empty_table(self.root)
return self
end
-- Update positions of objects
-- Points input must be same structure as existing in k-d Tree
kd_tree.updatePositions = function(self, points)
self.points = points
self:clearRoot()
self.root = buildTree(points, 0, nil)
return self
end
-- get all points sorted by nearest
kd_tree.nearestAll = function(self, point)
local point = {
x = point.x or point[1],
y = point.y or point[2],
z = point.z or point[3]
}
local function comp_function(a, b)
return a[2] < b[2]
end
local res = {}
for i = 1, #self.points do
local v = self.points[i]
res[i] = {
[1] = {
x = v.x,
y = v.y,
z = v.z,
data = v.data
},
[2] = math.huge
}
res[i][2] = self.metric(res[i][1], point)
end
table_sort(res, comp_function)
return res
end
-- Query the nearest *count* neighbours to a point, with an optional
-- maximal search distance.
-- Result is an array with *count* elements.
-- Each element is an array with two components: the searched point and
-- the distance to it.
kd_tree.nearest = function(self, point, maxNodes, maxDistance)
local i
local result
local bestNodes
bestNodes = {}
local passedNodes = {}
local maxNodes = maxNodes or 1
local function comp_function(a, b)
return a[2] < b[2]
end
local function saveNode(node, distance)
binary_insert(bestNodes, {node, distance}, comp_function)
if #bestNodes > maxNodes then
table_remove(bestNodes)
end
end
local function nearestSearch(node)
if passedNodes[node] then return end
local bestChild
local dimension = self.dimensions[node.dimension]
local ownDistance = self.metric(point, node.obj)
local linearPoint = {}
local linearDistance
local otherChild
local i
for i = 1, #self.dimensions do
linearPoint[self.dimensions[i]] = i == node.dimension and point[self.dimensions[i]] or node.obj[self.dimensions[i]]
end
linearDistance = self.metric(linearPoint, node.obj)
if node.right == nil and node.left == nil then
if #bestNodes < maxNodes or ownDistance < bestNodes[#bestNodes][2] then
saveNode(node, ownDistance)
end
passedNodes[node] = true
return
end
if node.right == nil then
bestChild = node.left
elseif node.left == nil then
bestChild = node.right
else
bestChild = point[dimension] < node.obj[dimension] and node.left or node.right
end
nearestSearch(bestChild)
if #bestNodes < maxNodes or ownDistance < bestNodes[#bestNodes][2] then
saveNode(node, ownDistance)
passedNodes[node] = true
end
if #bestNodes < maxNodes or math.abs(linearDistance) < bestNodes[1][2] then
otherChild = bestChild == node.left and node.right or node.left
if (otherChild ~= nil) then
nearestSearch(otherChild)
end
end
end
if maxDistance then
for i = 1, maxNodes do
bestNodes[i] = {nil, maxDistance}
end
end
if self.root then
nearestSearch(self.root)
end
result = {}
for i = 1, math_min(maxNodes, #bestNodes) do
if bestNodes[i][1] then
result[#result + 1] = {
bestNodes[i][1].obj,
bestNodes[i][2]
}
end
end
return result
end
-- Get an approximation of how unbalanced the tree is.
-- The higher this number, the worse query performance will be.
-- It indicates how many times worse it is than the optimal tree.
-- Minimum is 1. Unreliable for small trees.
kd_tree.balanceFactor = function(self)
local function height(node)
if node == nil then
return 0
end
return math_max(height(node.left), height(node.right)) + 1
end
local function count(node)
if node == nil then
return 0
end
return count(node.left) + count(node.right) + 1
end
return height(self.root) / (math_log(count(self.root)) / math_log(2))
end
return kd_tree
end
local function distance_to(a, b)
-- printf("distance_to fired")
local dist_x = a.x - b.x
local dist_y = a.y - b.y
local dist_z = a.z - b.z
return dist_x * dist_x + dist_y * dist_y + dist_z * dist_z
end
-- Actual usage starts here
--[[
When you build position tree, you can find nearest objects in relation to other objects
Example, find nearest position to actor:
local pos_tree = kd_tree.buildTreeObjectIds({45, 65, 23, 5353, 232})
print_table(pos_tree:nearest(db.actor:position()))
will print position, distance and id of nearest object from given ids
--]]
-- Build k-d Tree by several inputs
-- Input - Array of vectors (vector():set(x, y, z) or table with x, y, z keys or 1, 2, 3 keys)
-- Data is an optional table where you can bind your data to your object, must have same amount of fields as vectors (#vectors == #data)
function buildTreeVectors(vectors, data)
local v = {}
local data = data or {}
local vectors = vectors or {}
for k, t in pairs(vectors) do
table_insert(v, {
x = t.x or t[1],
y = t.y or t[2],
z = t.z or t[3],
data = data[k]
})
end
-- printf("vectors num %s", #v)
return kdTree(v, distance_to, {"x", "y", "z"})
end
-- Input - Array of game objects
-- Vectors are binded to object ids automatically
function buildTreeObjects(objects)
local vectors = {}
local data = {}
for k, v in pairs(objects) do
table_insert(vectors, v:position())
table_insert(data, v:id())
end
return buildTreeVectors(vectors, data)
end
-- Input - Array of server objects
-- Vectors are binded to object ids automatically
function buildTreeSeObjects(objects)
local vectors = {}
local data = {}
for k, v in pairs(objects) do
table_insert(vectors, v.position)
table_insert(data, v.id)
end
return buildTreeVectors(vectors, data)
end
-- Input - Array of game object ids
-- Vectors are binded to object ids automatically
function buildTreeObjectIds(ids)
local vectors = {}
local data = {}
local level_object_by_id = level.object_by_id
for k, v in pairs(ids) do
local obj = level_object_by_id(v)
if obj and obj ~= 0 and obj:id() ~= 0 then
table_insert(vectors, obj:position())
table_insert(data, v)
end
end
return buildTreeVectors(vectors, data)
end
-- Input - Array of server object ids
-- Vectors are binded to object ids automatically
function buildTreeSeObjectIds(ids)
local vectors = {}
local data = {}
local sim = alife()
local sim_object = sim.object
for k, v in pairs(ids) do
local obj = sim_object(sim, v)
if obj and obj ~= 0 and obj.id ~= 0 then
table_insert(vectors, obj.position)
table_insert(data, v)
end
end
return buildTreeVectors(vectors, data)
end
-- If you build a tree using functions above
-- You can use this function to update positions and rebuild the tree
function updateObjPositions(kd_tree)
local points = kd_tree.points
local new_points = {}
local sim = alife()
local sim_object = sim.object
for i = 1, #points do
local obj = sim_object(sim, points[i].data)
if obj then
local pos = obj.position
table_insert(new_points, {
x = pos.x,
y = pos.y,
z = pos.z,
data = points[i].data
})
end
end
kd_tree:updatePositions(new_points)
return kd_tree
end