Divergent/mods/Modded Executables/gamedata/shaders/r3/night_vision.h

360 lines
17 KiB
C

//night_vision.h - to define functions and variables for all 3 generations
#include "common.h"
///////////////////////////////////////////////////////
// BEEF'S SHADER BASED NIGHT VISION EFFECT //
///////////////////////////////////////////////////////
// Huge credit TO LVutner from Anomaly Discord, who //
// literally taught me everything I know, to Sky4Ace //
// who's simple_blur function I've adapted for this //
// shader, and to Meltac, who provided some advice //
// and inspiration for developing this shader. //
///////////////////////////////////////////////////////
// Note: You are free to distribute and adapt this //
// Shader and any components, just please provide //
// credit to myself and/or the above individuals. I //
// have provided credit for individual functions and //
// their original authors where applicable. - BEEF //
///////////////////////////////////////////////////////
///////////////////////////////////////////////////////
// STEP 0 - GLOBAL DEFINITIONS AND INCLUDES
///////////////////////////////////////////////////////
//////// GLOBAL SETTINGS(ALL GENERATIONS)////////
// NVG POSITIONING OPTIONS: in (X, Y) format. If X is 0, it's L edge of screen, if 1, it's right edge of screen. Note that it's not linear across the screen.
#define nvg_gen_1_centered float2(0.5f,0.5f) // Gen 1 monocular without offset
#define nvg_gen_2_offset_1 float2(0.25f,0.5f) // Offset for Gen 2 left eye
#define nvg_gen_2_offset_2 float2(0.75f,0.5f) // Offset for Gen 2 right eye
#define nvg_gen_3_offset_1 float2(0.05f,0.5f) // Offset for Gen 3 outer left tube
#define nvg_gen_3_offset_2 float2(0.3f,0.5f) // Offset for Gen 3 inner left tube
#define nvg_gen_3_offset_3 float2(0.7f,0.5f) // Offset for Gen 3 inner right tube
#define nvg_gen_3_offset_4 float2(0.95f,0.5f) // Offset for Gen 3 outer right tube
#define nvg_gen_1_offset float2(0.75f,0.5f) // Offset for Gen 1 monocular
#define nvg_gen_1_offset_flipped float2 (1-nvg_gen_1_offset.x, 1-nvg_gen_1_offset.y) // inverse of nvg_gen_1_offset (To allow switching L/R side of screen)
#define circle_radius float (0.5f)
// NVG BLUR OPTIONS: (DEPTH INFLUENCED, CLOSE OBJECTS ARE AT MAX BLUR, FAR OBJECTS ARE AT MIN BLUR)
#define gen_1_min_blur_factor float (0.25) // Gen 1 - minimum blur applied to image (at far distance), 1 is no blur, higher is more
#define gen_1_max_blur_factor float (0.95) // maximum blur applied to image (at camera)
#define gen_2_min_blur_factor float (0.2) // Gen 1 - minimum blur applied to image (at far distance), 1 is no blur, higher is more
#define gen_2_max_blur_factor float (0.8) // maximum blur applied to image (at camera)
#define gen_3_min_blur_factor float (0.1) // Gen 1 - minimum blur applied to image (at far distance), 1 is no blur, higher is more
#define gen_3_max_blur_factor float (0.6) // maximum blur applied to image (at camera)
// NVG VISION DISTANCE (LIGHT ATTENTUATION - FEWER PHOTONS FROM FAR OBJECTS HIT THE INTENSIFIER TUBE AND THEREFORE APPEAR DARKER)
#define gen_1_max_vision_distance float (250) // How far away do objects appear completely dark for Gen 1 NVG
#define gen_1_min_vision_distance float(30.0) // How close does light attenutation begin to take effect (default 0.0)
#define gen_1_dim_threshold float (0.7) // Pixels brighter than this aren't dimmed, since they're likely light sources
#define gen_2_max_vision_distance float (400) // How far away do objects appear completely dark for Gen 1 NVG
#define gen_2_min_vision_distance float(30.0) // How close does light attenutation begin to take effect (default 0.0)
#define gen_2_dim_threshold float (0.7) // Pixels brighter than this aren't dimmed, since they're likely light sources
#define gen_3_max_vision_distance float (600) // How far away do objects appear completely dark for Gen 1 NVG
#define gen_3_min_vision_distance float(30.0) // How close does light attenutation begin to take effect (default 0.0)
#define gen_3_dim_threshold float (0.7) // Pixels brighter than this aren't dimmed, since they're likely light sources
// LIGHT AMPLIFICATION VALUES
// #define nvg_light_amplificiation float (8) // How much brigher does the image get before NVG processing
// LUMA SHARPEN VALUES
// NVG BLOOM OPTIONS (AKA WASHOUT EFFECT):
#define gen_1_bloom_threshold (0.11) // Threshold from 0 to 1 of how bright the pixel should be for bloom (0 is black, 0.5 is middle gray, 1.0 is bright white - default about 0.9 looks good)
#define gen_1_bloom_multiplier float (2.5) // How much transparency to apply to bloom effect (0.0 = full bloom, 0.5 = 50%, 1.0 = no bloom)
#define gen_2_bloom_threshold (0.18) // Threshold from 0 to 1 of how bright the pixel should be for bloom (0 is black, 0.5 is middle gray, 1.0 is bright white - default about 0.9 looks good)
#define gen_2_bloom_multiplier float (2) // How much transparency to apply to bloom effect (0.0 = full bloom, 0.5 = 50%, 1.0 = no bloom)
#define gen_3_bloom_threshold (0.29) // Threshold from 0 to 1 of how bright the pixel should be for bloom (0 is black, 0.5 is middle gray, 1.0 is bright white - default about 0.9 looks good)
#define gen_3_bloom_multiplier float (2) // How much transparency to apply to bloom effect (0.0 = full bloom, 0.5 = 50%, 1.0 = no bloom)
// NVG CRT / NOISE VALUES
#define gen_1_crt_effect_factor float(0.05) // How much CRT effect to add to NVG image (0 = none, 1 = max) (CRT effect makes it look like an old school Cathode Ray Tube television)
#define gen_1_nvg_noise_factor float (0.15) // How much noise to add to NVG image (0.04 is default, anything greater than 0.15 is insane)
#define gen_1_scintillation_constant float (0.999f) // The closer the number is to 1.00000, the less scintillation effect. 0.9995f is a good default value. 0.9990 is stronger.
#define gen_2_crt_effect_factor float(0.2) // How much CRT effect to add to NVG image (0 = none, 1 = max) (CRT effect makes it look like an old school Cathode Ray Tube television)
#define gen_2_nvg_noise_factor float (0.15) // How much noise to add to NVG image (0.04 is default, anything greater than 0.15 is insane)
#define gen_2_scintillation_constant float (0.9993f) // The closer the number is to 1.00000, the less scintillation effect. 0.9995f is a good default value. 0.9990 is stronger.
#define gen_3_crt_effect_factor float(0.4) // How much CRT effect to add to NVG image (0 = none, 1 = max) (CRT effect makes it look like an old school Cathode Ray Tube television)
#define gen_3_nvg_noise_factor float (0.15) // How much noise to add to NVG image (0.04 is default, anything greater than 0.15 is insane)
#define gen_3_scintillation_constant float (0.9995f) // The closer the number is to 1.00000, the less scintillation effect. 0.9995f is a good default value. 0.9990 is stronger.
// NVG COLOR OPTIONS:
#define gen_1_saturation_color float3 (0.4,1,0.1) // Gen1 NVG color - it defines the max amount of color from 0 to 1 using (Red,Green,Blue)
#define gen_2_saturation_color float3 (0.3,1,0.3) // Gen1 NVG color - it defines the max amount of color from 0 to 1 using (Red,Green,Blue)
#define gen_3_saturation_color float3 (0.1,1,0.8) // Gen1 NVG color - it defines the max amount of color from 0 to 1 using (Red,Green,Blue)
// LUMA Sharpen
// NVG VIGNETTE AMOUNT
#define gen_1_vignette_amount float (0.1f)
#define gen_2_vignette_amount float (0.08f)
#define gen_3_vignette_amount float (0.05f)
///////////////////////////////////////////////////////
// DEFINE NVG MASK (Credit to LVutner for huge assistance in designing the functions)
///////////////////////////////////////////////////////
float compute_lens_mask(float2 masktc, float nvg_gen)
{
if (nvg_gen == 1) // for Gen 1 NVG
{
return step(distance(masktc,nvg_gen_1_offset), circle_radius);
}
else if (nvg_gen == 10) // for Gen 1 NVG, but flipped (Left side vs right side) aka Gen 10 NVG
{
return step(distance(masktc,nvg_gen_1_offset_flipped), circle_radius);
}
else if (nvg_gen == 11) // for Gen 1 NVG, but centered
{
return step(distance(masktc,nvg_gen_1_centered), circle_radius);
}
else if (nvg_gen == 2) // for Gen 2 NVGs
{
if ( (step(distance(masktc,nvg_gen_2_offset_1), circle_radius) == 1) || (step(distance(masktc,nvg_gen_2_offset_2), circle_radius) == 1))
{
return 1;
}
else
{
return 0;
}
}
else if (nvg_gen == 3) // for Gen 3 NVGs
{
if (((step(distance(masktc,nvg_gen_3_offset_1), circle_radius) == 1) || (step(distance(masktc,nvg_gen_3_offset_2), circle_radius) == 1)) || ((step(distance(masktc,nvg_gen_3_offset_3), circle_radius) == 1) || (step(distance(masktc,nvg_gen_3_offset_4), circle_radius) == 1)))
{
return 1;
}
else
{
return 0;
}
}
else
{
return 0;
}
}
///////////////////////////////////////////////////////
// ASPECT RATIO CORRECTION (Credit LVutner)
///////////////////////////////////////////////////////
float2 aspect_ratio_correction (float2 tc)
{
tc.x -= 0.5f;
tc.x *= (screen_res.x / screen_res.y);
tc.x += 0.5f;
return tc;
}
///////////////////////////////////////////////////////
// CURVED TEXTURE COORDINATES FOR CRT EFFECT (adapted from "MattiasCRT" on ShaderToy, credit Mattias)
///////////////////////////////////////////////////////
float2 curve_texturecoords(float2 curved_tc)
{
curved_tc = (curved_tc - 0.5) * 2.0;
curved_tc *= 1.1;
curved_tc.x *= 1.0 + pow((abs(curved_tc.y) / 5.0), 2.0);
curved_tc.y *= 1.0 + pow((abs(curved_tc.x) / 4.0), 2.0);
curved_tc = (curved_tc / 2.0) + 0.5;
curved_tc = curved_tc *0.92 + 0.04;
return curved_tc;
}
///////////////////////////////////////////////////////
// Exposure Increaser
///////////////////////////////////////////////////////
float3 exposer_increaser( float3 image, float gray, float exposure)
{
float b=4*(exposure-1);
float a=1-b;
float f= gray*(a*gray+b);
return f*image;
}
///////////////////////////////////////////////////////
// CRT EFFECT (adapted from MattiasCRT on ShaderToy, credit Mattias)
///////////////////////////////////////////////////////
float3 make_crt_ified(float3 fragColor, float2 tc )
{
//float2 screen_res = screen_res.xy; // define screen res variable
float2 uv = curve_texturecoords(tc);
float3 col;
float x = sin(0.3*timers.x+uv.y*21.0)*sin(0.7*timers.x+uv.y*29.0)*sin(0.3+0.33*timers.x+uv.y*31.0)*0.0017;
col.r = fragColor.r;
col.g = fragColor.g;
col.b = fragColor.b;
col.r += 0.08f * fragColor.r;
col.g += 0.05f * fragColor.g;
col.b += 0.08f * fragColor.b;
col = clamp(col*0.6+0.4*col*col*1.0,0.0,1.0);
float vig = (0.0 + 1.0*16.0*uv.x*uv.y*(1.0-uv.x)*(1.0-uv.y));
col *= float(pow(abs(vig),0.3));
col *= float3(0.95,1.05,0.95);
col *= 2.8;
float scans = clamp( 0.35+0.35*sin(uv.y*screen_res.y*2.0), 0.0, 1.0);
float s = pow(scans,1.7);
col = col*float( 0.4+0.7*s) ;
col *= 1.0+0.01*sin(110.0*timers.x);
if (uv.x < 0.0 || uv.x > 1.0)
col *= 0.0;
if (uv.y < 0.0 || uv.y > 1.0)
col *= 0.0;
col*=1.0-0.65*float(clamp(((tc.x % 2.0)-1.0)*2.0,0.0f,1.0f));
float comp = smoothstep( 0.1, 0.9, sin(timers.x) );
fragColor = col;
return fragColor;
}
///////////////////////////////////////////////////////
// LUMA SHARPEN (adapted from Simple Luma Sharpen on ShaderToy, credit xwize)
///////////////////////////////////////////////////////
float3 YUVFromRGB( float3 color)
{
return float3 (color.r * 0.299 + color.g * 0.587 + color.b * 0.114,
color.r * -0.147 + color.g * -0.289 + color.b * 0.436,
color.r * 0.615 + color.g * -0.515 + color.b * -0.100);
}
float3 RGBFromYUV ( float3 color)
{
return float3 (color.r * 1.0 + color.b * 1.140,
color.r * 1.0 + color.g * -0.395 + color.b * 0.581 ,
color.r * 1.0 + color.g * 2.032);
}
float extractLuma(float3 c)
{
return (c.r * 0.299 + c.g * 0.587 + c.b * 0.114);
}
float3 luma_sharpen(float3 image, float2 uv)
{
float3 yuv = YUVFromRGB(image);
float2 imgSize = screen_res.xy;
float accumY = 0.0;
for(int i = -1; i <= 1; ++i) {
for(int j = -1; j <= 1; ++j) {
float2 offset = float2(i,j) / imgSize;
float s = extractLuma(s_image.SampleLevel(smp_rtlinear,uv + offset,0).rgb);
float notCentre = min(float(i*i + j*j),1.0);
accumY += s * (9.0 - notCentre*10.0);
}
}
accumY /= 9.0;
float gain = 0.9;
accumY = (accumY + yuv.x)*gain;
image = RGBFromYUV (float3(accumY,yuv.y,yuv.z)); // sharpened
return image;
}
///////////////////////////////////////////////////////
// VIGNETTE CALCULATOR (USED IN NVG AS WELL AS BLOOM PHASES TO DARKEN EDGES OF SHIT)
///////////////////////////////////////////////////////
float calc_vignette (float night_vision_generation, float2 tc)
{
float vignette;
float2 corrected_texturecoords = aspect_ratio_correction(tc);
if (night_vision_generation == 1)
{
float gen1_vignette_right = pow(smoothstep(circle_radius,circle_radius-gen_1_vignette_amount, distance(corrected_texturecoords,nvg_gen_1_offset)),3);
vignette = 1.0 - (1.0 - gen1_vignette_right); // apply vignette
}
else if (night_vision_generation == 10)
{
float gen1_vignette_left = pow(smoothstep(circle_radius,circle_radius-gen_1_vignette_amount, distance(corrected_texturecoords,nvg_gen_1_offset_flipped)),3);
vignette = 1.0 - (1.0 - gen1_vignette_left); // apply vignette
}
else if (night_vision_generation == 11)
{
float gen1_vignette_center = pow(smoothstep(circle_radius,circle_radius-gen_1_vignette_amount, distance(corrected_texturecoords,nvg_gen_1_centered)),3);
vignette = 1.0 - (1.0 - gen1_vignette_center); // apply vignette
}
else if (night_vision_generation == 2)
{
float gen2_vignette_1 = pow(smoothstep(circle_radius,circle_radius-gen_2_vignette_amount, distance(corrected_texturecoords,nvg_gen_2_offset_1)),3);
float gen2_vignette_2 = pow(smoothstep(circle_radius,circle_radius-gen_2_vignette_amount, distance(corrected_texturecoords,nvg_gen_2_offset_2)),3);
vignette = 1.0 - ((1.0 - gen2_vignette_1) * (1.0 - gen2_vignette_2)); // apply vignette
}
else if (night_vision_generation == 3)
{
float gen3_vignette_1 = pow(smoothstep(circle_radius,circle_radius-gen_3_vignette_amount, distance(corrected_texturecoords,nvg_gen_3_offset_1)),3);
float gen3_vignette_2 = pow(smoothstep(circle_radius,circle_radius-gen_3_vignette_amount, distance(corrected_texturecoords,nvg_gen_3_offset_2)),3);
float gen3_vignette_3 = pow(smoothstep(circle_radius,circle_radius-gen_3_vignette_amount, distance(corrected_texturecoords,nvg_gen_3_offset_3)),3);
float gen3_vignette_4 = pow(smoothstep(circle_radius,circle_radius-gen_3_vignette_amount, distance(corrected_texturecoords,nvg_gen_3_offset_4)),3);
vignette = 1.0 - ((1.0 - gen3_vignette_1) * (1.0 - gen3_vignette_2) * (1.0 - gen3_vignette_3) * (1.0 - gen3_vignette_4)); // apply vignette
}
return vignette;
}
///////////////////////////////////////////////////////
// DEPTH BLUR - LITERALLY BLURS THE DEPTH VALUE IN S_POSITION
///////////////////////////////////////////////////////
float blurred_depth (float2 tc, float fp_start, float fp_end)
{
float Pi = 6.28318530718; // Pi*2
float Directions = 12.0; // BLUR DIRECTIONS (Default 16.0 - More is better but slower)
float Quality = 4.0; // BLUR QUALITY (Default 4.0 - More is better but slower)
float Size = 4;
float2 Radius = Size/screen_res.xy;
// how far away is the center of our COC
float center_depth = s_position.Load( int3( (tc)*screen_res.xy, 0 ), 0 ).z;
if (center_depth == 0) { center_depth = 10000; }
// set our average depth to be center depth
float depth_average = 0;
// where we store the depth_sample
float depth_sample;
// where we store the weighted value from sample
float depth_tap;
// where we store our weighted
float weight = 0.0;
// where we store the total weighted
float total_weight = 0.0;
// Blur calculations
for(float i=1.0; i<=Quality; i++) // how far away are we
{
for( float d=0.0; d<Pi; d+=Pi/Directions) // where are we around the circle
{
// pull depth at our sample point
depth_sample = s_position.Load( int3( ((tc+float2(cos(d),sin(d))*Radius*i) * screen_res.xy), 0 ), 0 ).z;
// if we hit the sky, give it a depth of 10k
if (depth_sample == 0) {depth_sample = 10000.0f; }
// if the point we hit is closer than our (center? average), then that point should add blurring to our centerpoint
if (depth_sample < center_depth)
{
weight = Quality - pow((i - 1),0.5);
depth_average += depth_sample * weight;
total_weight += weight;
}
// but if the point we hit is farther than our (center? average?) then that point should not be adding blur to our centerpoint
}
}
depth_average /= total_weight;
return depth_average;
}